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We introduce K2-THINK, a reasoning system that achieves frontier performance with just a
32B parameter model — surpassing or matching much larger models such as GPT-OSS 120B
and DeepSeek v3.1. Built on the Qwen2.5 base model, our system demonstrates that smaller
models can compete at the highest levels through synergistic combination of advanced post-
training and test-time computation techniques. Our approach is built on top of six key tech-
nical pillars: Long Chain-of-thought Supervised Finetuning, Reinforcement Learning with Verifi-
ableRewards (RLVR), Agentic planningprior to reasoning, Test-timeScaling, SpeculativeDecod-
ing, and Inference-optimized Hardware, using only publicly available open-source datasets. K2-
THINK prioritizes mathematical reasoning, achieving state-of-the-art scores on public bench-
marks for open source models, while also maintaining strong performance on other domains
such as Code and Science. Our results validate that a more parameter-efficient model like
K2-Think 32B can rival state-of-the-art systems through an integrative post-train recipe includ-
ing long chain-of-thought training and strategic inference-time enhancements, paving the way
for more accessible and affordable open-source reasoning systems. We have made K2-THINK
freely available at k2think.ai demonstrating best-in-class inference speeds, through the
Cerebras Wafer-Scale Engine, delivering upwards of 2,000 tokens per second per request.
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Figure 1: K2-THINK exhibits remarkable parameter efficiency, providing comparable or superior performance to
frontier reasoning models in complex math domains with an order of magnitude smaller model. The composite
score here is the micro-average for each model over four complex math benchmarks, weighted by the number
of questions in each benchmark (AIME 2024, AIME 2025, HMMT2025, andOmni-MATH-HARD; see Section 3 for
the benchmark details). Note: parameter counts for proprietary models are speculative.

1 Introduction
Recent advances in frontier reasoning models have highlighted the effectiveness of long chain-of-
thought reasoning, enabled by large-scale supervised fine-tuning and reinforcement learning. Sys-
tems like OpenAI-O3 (OpenAI, 2025) and Gemini 2.5 (Google DeepMind, 2025) have achieved strong
results on competition-level math benchmarks, complex coding tasks, and advanced scientific rea-
soning datasets, setting new milestones for reasoning-centered language models. These develop-
ments have also stimulated further exploration in the open-source community, where researchers
have trainedcompetitive reasoning systemswith reinforcement learning (Yuet al., 2025; Huet al., 2025;
Wang et al., 2025c) and investigated mechanisms by which RL improves reasoning (Zeng et al., 2025;
Yue et al., 2025; Shao et al., 2025; Agarwal et al., 2025b; Wang et al., 2025b).

In this reportwe introduceK2-THINK: acompetitive reasoningsystembuilt fromtheopen-weightQwen2.5-
32B base model (Yang et al., 2024a). We break down our system into stages, including post-training
and test-time, where an integrative recipe involving 6major technical innovations was introduced over
all stages spanning finetuning, reinforcement learning, planning, and hardware optimization to boost
the base model reasoning capability, and we evaluated how each stage affects performance. These
components combine to enable a model of merely 32 billion parameters, with modest test-time
compute, tomatch themathematical reasoning performance of proprietary frontiermodels. In fact,
K2-THINK emerges as the top open-source model for complex math benchmarks matching or exceed-
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ing previously leading models that are orders of magnitude greater in size. Figure 1 presents a plot of
the global micro-average of performance (essentially dividing the total number of correct answers by
the total number of questions across all test sets) of each model over four challenging math compe-
tition tasks with respect to the total number of parameters for each model. The prominent position-
ing of K2-THINK in the top-left visually depicts its superior parameter efficiency, demonstrating that it
achieves State-of-the-Art performance among open-source models with a significantly smaller total
parameter count. Detailed results and discussion for the benchmarks are presented in Section 3.

More specifically, K2-THINK incorporates six key innovations to deliver a strong reasoning system. We
first extend the base model with chain-of-thought capabilities through Supervised Fine-tuning (SFT),
followed by Reinforcement Learning with Verifiable Rewards (RLVR) to strengthen reasoning perfor-
mance. We then enhance the model with inference-time techniques: agentic planning and test-time
scaling using Best-of-N sampling. Finally, we deploy K2-THINK with two speed optimizations: spec-
ulative decoding and Cerebras’ Wafer-Scale Engine, an inference-optimized hardware system. This
final stage enables themodel to deliver its powerful chain-of-thought reasoning capabilities with near-
instantaneous response times, deployed at speeds upwards of 2000 tokens per second per user re-
quest.

With the release of K2-THINK, we share our experience and make available an important advancement
in open-source languagemodeling, that aggressive post-train engineering and test-time computation,
even with a modest commodity pretrained base model, can significantly boost reasoning capabilities
in cost-effective manners. Prior studies have reported that, in certain regimes, allocating more com-
putation during inference can bemore cost-effective than scalingmodel size (Snell et al., 2025); for re-
cent frontier systems—includingOpenAI’so1/o3 (OpenAI, 2024, 2025), DeepSeek-R1 (Guoetal., 2025),
Google’s Gemini 2.5 (Google DeepMind, 2025), and xAI’s Grok4 (xAI, 2025) — model capabilities have
been claimed to improve with increased test-time budgets (Ji et al., 2025a; Yang et al., 2025b).

In addition to releasing code and model weights, we offer K2-THINK through a public website and as
a production-ready API endpoint.1 This allows the community to engage directly with a living system,
shifting the emphasis from static artifacts to a deployable, studyable service that can be stress-tested
and iterated on in the open. As dynamic inference-time reasoning becomes more complex, our API
demonstrates the requirements of sophisticated systems for top performance, and provides an oper-
ational deployment delivering robustness, safety, and efficiency under real-world constraints.

In Section 2 we describe the development process and deployment of K2-THINK, using the Cerebras
Wafer-ScaleEngine. Section3presents a thoroughset of evaluations andablations that attributegains
across post-training and test-time computation. Section 4 situates our contributions within the liter-
ature. We conclude in Section 5 with a summary overview, discuss our motivations for deploying this
model, and chart future directions for extending reasoning performance with openly released models
and deployment-ready systems.

2 K2-THINK Development
We initiated K2-THINK’s development to study a complete post-training recipe for enhanced reasoning
and establish best practices for extending our in-house foundationmodels. Throughout this study, we
sought to validate published best-practices as well as test original test-time computation ideas.

We chose to fine-tune a 32B-scale base model for K2-THINK, as:

(1) it allows for fast iteration while providing strong base capabilities and
1available upon request
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Figure2: Pass@1performanceover training. Pass@1
of K2-THINK-SFT across five benchmarks; the x-axis is
training progress (epochs), the y-axis is pass@1 score.

Figure 3: Pass@k on AIME2024. Pass@k of K2-THINK-
SFTand theQwen-2.532Bbasemodel; the x-axis is the
number of rollouts per question, the y-axis is pass rate.

(2) its size suits both research and consumer computation frameworks.

Specifically, we selected Qwen2.5-32B as it is not tuned for reasoning, allowing us to fully validate our
recipe’s effectiveness.

2.1 Phase 1: Supervised Fine Tuning
The initial stage of K2-THINK development constitutes supervised fine-tuning (SFT) of the base model
using curated long chain-of-thoughts (CoT), establishing the first pillar of our complete reasoning sys-
tem. This follows the paradigm introduced by DeepSeek in the development of their R1 model (Guo
et al., 2025). This phase of training serves to provide guidance to the pre-trained base languagemodel
for generating structured responses to complex queries. Additionally, themodel is trained to adopt an
expected output format in which the model’s reasoning process is made clear prior to producing an
answer. By providing a token-by-token supervisory signal through extended CoT, the base model’s in-
trinsic computation capabilities are expanded substantially (Wei et al., 2022; Schuurmans et al., 2024).

Our SFT phase2 utilized the existing AM-Thinking-v1-Distilled dataset,3 composed of CoT rea-
soning traces and instruction/response pairs, with prompts drawn from tasks spanning mathemati-
cal reasoning, code generation, scientific reasoning, instruction following, and general chat (Ji et al.,
2025b; Tian et al., 2025). In what follows, we will simply refer to this supervised fine-tuned model as
K2-THINK-SFT.

2.1.1 Observations
Our SFT experiments on Qwen2.5-32B yielded several practical insights. Of particular note, we con-
ducted a step-wise evaluation of K2-THINK-SFT across five representative benchmarks. As shown in
Figure 2, performance improves rapidly within the first third of training (roughly 0.5 epoch), particularly
on mathematics benchmarks (AIME 2024 and AIME 2025). After this sharp initial gain, most bench-
marks plateau, with AIME 2024 stabilizing around 79.3%pass@1 and AIME 2025 around 72.1%. GPQA
and IFEval continue to exhibit modest upward trends, while LiveCodeBench shows a slower but steady
improvement up to 56.4%. We observe that our SFT phase has reached convergence, with the model
exhibiting diminishing returns to continued training on the dataset.

2Code, based on LLaMA-Factory, for SFT can be found at https://github.com/MBZUAI-IFM/K2-Think-SFT
3https://huggingface.co/datasets/a-m-team/AM-Thinking-v1-Distilled
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Figure 4: Ablation Studies on Multi-stage Training and RL from Base Models. (top): RL from base models
achievesmuch faster performancegainscompared toRL fromSFTmodels. However, a substantial performance
gap remains, suggesting that SFT enhances the model’s score at the cost of slower subsequent improvement
and increased susceptibility to collapse during RL. (bottom): reducing K2-THINK-SFTmaximum response length
significantly impacts performance. Multi-stage training (16,000 to 32,000) struggles to recover original perfor-
mance, even with prolonged training.

Apart frompass@1 scores, we also use pass@k to quantify reasoning performance under a fixed sam-
pling budget k. Interpreting the pass@k curve as a capability boundary, we evaluate K2-THINK-SFT.
In Figure 3, assessing performance on AIME2024, our SFT model dominates the base model across
sampling budgets. The SFT curves saturate near 93.3% by k ≈ 128, whereas the base model contin-
ues to improve but remains well below that plateau. The growth in K2-THINK-SFT performance as the
sampling budget grows suggests there remains an opportunity for improvement during the following
RL stage.

2.2 Phase 2: Reinforcement Learning with Verifiable Rewards
Following theSFTstage,weperformReinforcementLearningwithVerifiableRewards (RLVR) to trainK2-
THINK to excel in domains with verifiable outcomes, which constitutes the second pillar of our full rea-
soningsystem. RLVRreduces thecomplexity andcostofpreference-basedalignmentviaRLHF (Casper
et al., 2023) by directly optimizing for correctness of model generations.

For K2-THINK’s RLVR, we use the Guru dataset (Cheng et al., 2025), which was curated to extend open-
source reasoning models to verifiable domains beyond Math and Code. We leverage all six domains
from the Guru dataset, comprising nearly 92,000 verifiable prompts that cover Math, Code, Science,
Logic, Simulation, and Tabular tasks. We refer interested readers to the Guru paper for the detailed
dataset curation, including de-duplication, reward designs, and filtering. Our RLVR implementation is
built on the verl library (Sheng et al., 2025) with the GRPO algorithm (Shao et al., 2024).
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2.2.1 Observations
In this subsection we provide a retrospective set of observations that serve as motivation for future
development.

Starting fromastrongSFTcheckpoint yieldsbetterperformancebut limitsRLgains. WhileRLcon-
sistently improvedK2-THINK-SFTperformance across internal evaluations andpublic benchmarks, the
absolute improvements were modest. As a comparative experiment, we also trained a model with the
same RL recipe and Guru data directly from the Qwen2.5-32B base. Figure 4 (top) demonstrates that
RL training from the base model achieves nearly 40% improvement on AIME 2024 over the training
course, while RL from K2-THINK-SFT yields only 5% improvement. This validates that stronger SFT
checkpoints leave less room for RL refinement, consistent with findings from Liu et al. (2025b) regard-
ing the relationship between SFT scope and subsequent RL effectiveness. Also, we notice RL train-
ing from the SFT checkpoint exhibits early plateauing and even degradation. We suspect that heavily
“SFTed” models become constrained in their ability to explore alternative reasoning strategies during
RL training, limiting the policy’s capacity for meaningful adaptation.

Multi-stage RL training with reduced initial context length degrades performance. Many concur-
rent research efforts employ multi-stage training as implicit curriculum learning (An et al., 2025; Liu
et al., 2025a; Rastogi et al., 2025), incrementally increasing context length. This accelerates early train-
ing while the model develops competency and then allows the model in later stages to handle more
difficult questions with the extended context. We tested this approach by first constrainingmodel out-
put to 16,000 tokensduring initial RL training fromK2-THINK-SFT, thenexpanding to32,000 tokens (this
is the maximum length seen during the SFT stage) for continued training. As shown in Figure 4 (bot-
tom), this multi-stage approach failed to match even the baseline SFT model performance. Cutting
themaximum length below the SFT training configuration yields substantially lower performance. This
negative result undermines the original motivation for multi-stage training to achieve on-par or bet-
ter performance with shorter responses to save inference tokens. We suspect that reducing context
length below the SFT training regime (32k → 16k → 32k) disrupts the model’s established reasoning
patterns as we did not perform any additional data filtering to correspond to this multi-stage training.
However, we did not evaluate expanding beyond the SFT context length (e.g., 32k → 48k), as imple-
mented in Polaris (An et al., 2025), which may still provide benefits.

2.3 Phase 3: Test-time Improvement
To further enhance K2-THINK performance, we developed a test-time scaffolding that implements ex-
istingmethodsaswell as integratesanoriginal approach toprovidestructured input toourpost-trained
reasoning model. This subsection details two specific aspects of this scaffolding: agentic planning
before reasoning, namely “Plan-Before-You-Think”, and test-time scaling using Best-of-N sampling.
These two techniques are pillars three and four of the complete K2-THINK system.

A diagram mapping the flow of information from the input provided, down to the final response, is il-
lustrated in Figure 5. First, the prompt is restructured to outline a high-level plan, highlighting relevant
concepts. This augmented prompt is then passed through the K2-THINKmodel, generatingmultiple re-
sponses. Finally, a pairwise comparison between candidate responses surfaces the best generation
as the final output of our reasoning system. The remainder of this section provides details of how we
set-up and implemented each of these components.4

4Code for K2-THINK test-time improvements is at: https://github.com/MBZUAI-IFM/K2-Think-Inference
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Figure 5: Schematic overview of how K2-THINK generates responses via our test-time computation scaffold. A
user query is first input to an external model which generates a high-level plan to provide a structured prompt
to our K2-THINK model. We then sample 3 responses, using an external model to select the best which is then
provided as output.

“Plan-Before-You-Think”. The first procedure of K2-THINK’s test-time computation is the introduc-
tion of a planning agent. In our current system implementation, we simply ask the agent to extract key
concepts from the query, and create a high-level plan from them. The generated plan is appended
alongside the original query, and provided to the K2-THINK model. K2-THINK’s planning agent is simply
implemented via prompting an instruction-tuned Language Model. We restrict this “Plan-Before-You-
Think” procedure from providing direct answers or any reasoning trace. This deliberation phase, prior
to any “thinking” by our reasoning model, has some basis in psychology and cognitive science. Plan-
ning and reasoning can be considered dual processes of human cognition and decisionmaking (Evans,
2010) where planning is considered ameta-thinking process developing some structure to help guide
one’s thoughts.

Best-of-N (BoN) sampling. Best-of-N sampling, sometimes called repeated sampling, is a method
where an LLM generates N independent outputs for a given prompt, and a reward model (or verifier)
chooses the best one according to somemetric—such as accuracy, coherence, or alignment with hu-
man preference (Stiennon et al., 2020; Nakano et al., 2021). This strategy effectively explores multiple
possibilities and picks the most promising completion.

Implementation-wise, we pick the answer by comparing the answer candidates pairwise, discarding
the one that an independent LLM judges to be worse. In K2-THINK, we finally adopt N = 3, which
provides a reasonable improvement with low cost.

2.3.1 Observations
At inference time, we explored several approaches to enhance the K2-THINKmodel’s performance. We
began with simple engineering adjustments but soon discovered that minor changes to our test-time
computation procedures significantly impacted overall performance.

We experimented with temperature tuning, iterating through a list of temperatures from 0.1 to 1.0, but
found the overall improvement to be insignificant, leading us to use a temperature of 1.0 for all future
runs. We also conducted extensive prompt engineering, trying over 30 different system prompts that
utilized techniques like few-shot learning (Brown et al., 2020), role-playing (Kong et al., 2023), and situ-
ational prompting. However, we observed negligible gains.

More sophisticated test-time scalingmethodswere also tried following Sharma (2024). We tested sev-
eral standard approaches including re2 (ReRead) (Xu et al., 2024), self-consistency (Wang et al., 2023b),
CoTwith reflection (Shinn et al., 2023), andMixture of Agents (MoA) (Wang et al., 2024b). Among these,
Best-of-N (BoN) and MoA yielded the most notable improvements. While MoA delivered marginally
better performance, its significantly higher computational cost led to the selection of BoN for the final
K2-THINK system. A different, more experimental approach involving Reinforcement Learning with re-
wards drawn from self-certainty signals (Zhao et al., 2025) was also explored, but it did not lead to any
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improvement of the post-trained model’s performance.

2.4 Deploying K2-Think
We deploy K2-THINK on Cerebras Wafer-Scale Engine (WSE) systems, leveraging the world’s largest
processorandspeculativedecoding (Leviathanet al., 2023) toachieveunprecedented inferencespeeds
for the reasoning system, making up the final two pillars of K2-THINK. TheWSE delivers approximately
2,000 tokens per second, representing a 10 times improvement over the nominal 200 tokens per sec-
ond observed on typical deployment environments such as NVIDIA H100/H200 GPUs. This dramatic
speed-up fundamentally transforms the practical usability of long chain-of-thought reasoning.

Consider a typical complex reasoning task that generates a 32,000 token response, which is common
for challenging mathematical proofs or multi-step coding problems. On an NVIDIA H100, this can be
completed in just under 3 minutes, making interactive use frustrating and limiting practical applica-
tions. On the WSE the same 32,000 token generation is completed in just 16 seconds, maintaining
user engagement and enabling true back-and-forth problem solving.

Theperformanceadvantagecomes fromtheuniquearchitectureofWSE.UnlikeGPUs,whichmust con-
tinuously shuttle weights from high-bandwidth memory to GPU cores for each token generation, the
WSE keeps all model weights resident in massive on-chip memory, leveraging 25 Petabytes per sec-
ondof on-chipmemory bandwidth, which is over 3,000 timesmore than the 0.008PB/s providedby the
latest NVIDIA B200 GPU. Since auto-regressive models generate tokens serially, memory bandwidth
can be a significant bottleneck during inference. By integrating greater compute, memory, and mem-
ory bandwidth in a single device, wafer-scale technology enables industry-leading inference speed for
generative models.

This efficiency proves especially critical for our test-time computation approach and agent-based rea-
soning workflows. When performing best-of-3 sampling, the systemmust wait for all three responses
tocompletebeforeLLMevaluationcanselect theoptimal solution. Further,multi-step reasoningpipelines
that require sequential calls for planning and generation suffer from cumulative delays. The WSE’s
low-latency inference keeps these workflows interactive, preventing the cascade of delays that would
otherwise render complex reasoning tasks impractical.

Thedifferencebetweenwaitingminutesversusseconds foreach interaction fundamentally transforms
the user experience frombatch processing to interactive reasoning. This deployment ensures that K2-
THINK provides not just frontier reasoning capabilities but also the responsiveness required for prac-
tical, real-world applications, making sophisticated AI reasoning truly accessible for interactive use
cases. We invite everyone to experience our K2-THINK system, powered by Cerebras’ WSE, via API
and through k2think.ai.

3 K2-THINK Evaluation
We evaluate K2-THINK in comparison with frontier models, both open-weight and proprietary, among
a class of challenging reasoning benchmarks focused on Math, Code and Science. We design these
evaluations to demonstrate that K2-THINK, despite only having 32B parameters and fairly modest test-
time computation, pushes the frontier of open-source reasoning models. In particular we find that
K2-THINK is highly capable for complex Math tasks, as shown in Table 1. In total we evaluate K2-THINK
on the following benchmarks:

• MATH

– AIME 2024 (MAA, 2024), AIME 2025 (Ye et al., 2025b): The 2024 and 2025 editions of the
American InvitationMathematics Examination (AIME), with each year featuring 30 questions
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that have integer answers.

– HMMT25 (Balunović et al., 2025): This dataset, used as part of theMathArenabenchmarking
suite, is drawn from the Harvard-MIT Mathematics Tournament February 2025 competition,
featuring 30 questions drawn from the subject areas of Algebra+Number Theory, Combina-
torics, and Geometry.

– Omni-MATH-HARD (Omni-HARD, Gao et al. (2024)): We use the most difficult subset of the
Omni-MATH dataset, featuring questions sampled from competitive mathematics compe-
titions at the Olympiad level from several countries, retaining only those problems that are
rated as the top 2 difficulty level (9.0 and 10.0). This set has 173 questions, a much larger
competition math benchmark, and perhaps the most compelling one.

– A global micro-average (Micro-Avg.) is obtained by dividing the total number of correct an-
swers by the total number of questions across all datasets.

• CODE

– LiveCodeBench (LCBv5, Jain et al. (2024)): A collectionof programmingchallengeproblems
aggregated from online platforms. We use queries aggregated between July 1, 2024 and
February 1, 2025 (v5).

– SciCode (Tian et al., 2024): SciCode evaluates amodel’s ability to generate code for solving
realistic scientific research questions, covering 16 subdomains from Physics, Math, Mate-
rial Science, Biology, and Chemistry. We report scores from the version of the benchmark
where background knowledge is included within the prompt. Since SciCode already per-
forms a complex, multi-step planning phase in collating this information we do not run our
“Plan-Before-You-Think” step during our evaluation of K2-THINK on this baseline. All evalua-
tion results include sub-problem and full-problem accuracies in Table 1.

• SCIENCE

– GPQA-Diamond (GPQA-D,Reinet al. (2023)): Thisbenchmark iscomprisedof “Google-proof”
advanced multiple-choice questions written by experts from biology, physics, and chem-
istry.

– Humanity’s Last Exam (HLE, Phan et al. (2025)): Humanity’s Last Exam was developed by
subject-matter experts and consists of multiple-choice and short-answer questions with
solutions that are unambiguous and easily verifiable, but cannot be quickly answered via
internet retrieval.

Wemeasure theperformanceofK2-THINK incomparison to frontier reasoningmodels, bothopen-source
{Qwen3-30B-A3B (Yang et al., 2025a), GPT-OSS 20B (Agarwal et al., 2025a), QwQ-32B (Team, 2025),
OpenReasoning-Nemotron-32B (NVIDIA, 2025), DeepSeekR1 (Guoet al., 2025), DeepSeek-v3.1 (Think-
ing) (DeepSeek, 2025), GPT-OSS120B (Agarwal et al., 2025a), Qwen3-235B-A22B (Thinking) (Yangetal.,
2025a)} and proprietary {GPT-5 (High) (OpenAI, 2025), Gemini-2.5 (Pro) (Google DeepMind, 2025), o3
(High) (OpenAI, 2025)} to adequately assess the advancements made by our post-training and test-
time computation scaffold. We use a standardized evaluation methodology across all benchmarks
andmodels. Themaximum generation length is set to 64,000 tokens, sampling temperature is fixed at
1.0, top-p is 0.95 and the stop token is </answer>. Each benchmark result reported in Table 1 is the
average of 16 independent pass@1 evaluations.
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Benchmarks→ Math Code Science
Models ↓ AIME 2024 AIME 2025 HMMT25 Omni-HARD Micro-Avg. LCBv5 SciCode (sub/main) GPQA-D HLE
K2-THINK 90.83 81.24 73.75 60.73 67.99 63.97 39.2 / 12.0 71.08 9.95
GPT-OSS 20B 76.88 74.58 69.38 41.51 52.50 73.22 37.9 / 9.0 65.45 11.23
Qwen3-30B-A3B 70.63 58.14 23.54 23.87 33.08 42.20 28.5 / 4.8 58.91 6.14
Nemotron 32B 87.09 82.71 67.29 58.88 65.78 57.79 37.1 / 11.4 74.98 12.26
QwQ-32B 79.38 69.17 51.46 46.93 53.69 65.22 36.9 / 11.5 66.24 9.98
GPT-OSS 120B 89.58 84.59 81.88 57.76 67.20 74.53 38.8 / 11.0 77.04 18.58
Qwen3 235B-A22B 86.68 75.43 61.88 56.91 62.99 56.64 39.3 / 10.9 65.55 14.23
DeepSeek V3.1† 91.87 82.49 83.54 53.22 64.43 66.59 38.2 / 11.7 79.46 8.40
DeepSeek R1† 74.38 65.21 47.08 51.33 55.06 61.01 36.7 / 11.5 71.08 8.50 *
o3 High 92.26 86.58 80.80 59.39 68.68 73.30 41.7 / 11.9 81.30 22.34
Gemini2.5 Pro 87.24 85.75 74.18 69.36 73.82 58.24 45.1 / 15.4 84.51 19.93
GPT-5 High 94.78 92.15 91.79 73.61 80.21 82.68 41.3 / 12.4 85.96 28.63

Table 1: Benchmark performance comparison of K2-THINK against open-source (top) and proprietary (bottom)
frontier models. All metrics are reported as percentages. We find that K2-THINK is especially strong on chal-
lenging Math benchmarks while also maintaining respectable performance on Code and Science. Values
marked with * are directly taken from published results. All other reported values are avg@16 accuracy of gen-
erated answers, evaluated locally or through paid API access. From these results, we see that our K2-THINK
system with only 32B parameters approaches or exceeds the performance of the frontier models that are or-
ders of magnitude larger. † showing results for the original DeepSeek R1 and V3.1. Since the performance of
DeepSeek R1-0528 is similar to V3.1, we do not report it separately.

K2-THINK excels in competition math questions. The evaluation results are summarized in Table 1.
K2-THINK, a 32B-parameter model, exhibits an average micro-average score of 67.99 across all math
questions. This result is particularly noteworthy when compared to other models of similar or slightly
larger size, such as GPT-OSS 20B (avg. 52.50), Qwen3-30B-A3B (avg. 33.08), and OpenReasoning-
Nemotron-32B (avg. 65.78). The results clearly show that K2-THINK surpasses these models by a
significantmargin. Furthermore, K2-THINK’s performance is not only dominant within its size class but
also highly competitive withmodels that are orders ofmagnitude larger. Itsmath score also surpasses
the larger models, including the two state-of-the-art open source models: DeepSeek V3.1 671B (avg.
64.43) andGPT-OSS120B (avg. 67.20). Notably, K2-THINK performswell onOmni-MATH-HARD (60.73),
which contains the most difficult questions across competitions. This performance places K2-THINK
at the top of all open source models on math reasoning, and is close to strong proprietary models
such as o3 High, showing that K2-THINK excels in the most challenging questions.

K2-THINK isversatileonScienceandCodingdomain. Theevaluation results alsoshow thatK2-THINK
demonstrates a robust and competitive capability across both coding and scientific domains, solidify-
ing its position as a versatile model. On coding benchmarks, K2-THINK achieves a score of 63.97 on
LiveCodeBench, significantly outperforming its similarly sized peers, including GPT-OSS 20B (42.20)
and Qwen3-30B-A3B (36.9). This performance also surpasses the larger Qwen3 235B-A22B (56.64).
When compared to larger models, K2-THINK shows parity and even superiority in certain metrics: it
achieves 39.2 on the SciCode benchmark (sub-problems), making it a close second compared with
Qwen3 235B-A22B (39.3). On scientific reasoning, our system’s performance on the GPQA-Diamond
benchmark is 71.08, superior to most open-source models except OpenReasoning-Nemotron-32B
(74.98), andGPT-OSS120B (77.04). While itsHLEscoreof9.95 isnot thehighest, it remains respectable
and indicative of a broad knowledge base. This combination of strong performance across diverse do-
mains argues that K2-THINK is not merely a specialist but a versatile model capable of tackling a wide
range of analytical and knowledge-intensive tasks with high efficacy.

Beyond the preliminary conclusions shared in this report, our team is continuing to perform additional
analyses and comparisons between K2-THINK and amore complete set of competing models and rea-
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soning benchmarks. It is however clear that K2-THINK presents an advancement in open-source rea-
soning systems. With a 32B parameter model, and a moderate amount of test-time compute, our sys-
tem provides comparative performance to models significantly larger (see Figure 1 for a visual depic-
tion). This level of parameter efficiency, in terms of benchmark performance is a notable achievement,
specifically among complex mathematics reasoning tasks.

Component Analysis of K2-THINK Test-Time Computation In order to analyze the individual contri-
bution of each element of the test-time computation procedure to the final performance of K2-THINK,
we conducted analyses where we implemented each procedure in isolation on top of the post-trained
checkpoint. That is, after performing both SFT and RL, we applied only the prompt restructuring via
high-level planning or best-of-3 re-sampling and verification during evaluation. To simplify the discus-
sion, we present this component analysis only using the four Math benchmarks however the overall
insights are consistent across all other benchmarks.

AIME 2024 AIME 2025 HMMT25 Omni-MATH-HARD
SFT+RL Checkpoint 86.26 77.72 66.46 56.74
+ Plan only 85.21 81.04 71.87 58.97
+ Bo3 only 90.77 81.22 71.16 59.47
+ Plan + Bo3 (K2-THINK) 90.83 81.24 73.75 60.73

Table 2: Component analysis of the test-time computation procedures used to improve from our post-training
checkpoint in the development of our final K2-THINK system. The greatest gains come from Best-of-3 sampling,
further improvement is seen after combining with high-level planning.

The component analyses presented here are executed in the same fashion as the comparative base-
lines discussed above. All results presented in Table 2 are averaged over 16 independent runs of the
benchmark with the same settings as presented previously. We see in this analysis that themajority of
the improvement over the post-trained checkpoint is afforded via Best-of-N scaling, using only 3 sam-
pled generations per prompt. In isolation, the performance benefit of re-structuring the input prompt
with a high-level plan also contributes an improvement to performance but with lesser effect. However,
in combination with Best-of-N scaling the overall test-time procedure offers significant gains, offering
4-6 percentage points of improvement across all benchmarks.

“Plan-Before-You-Think” Reduces Response Lengths With the complete K2-THINK system, we re-
quire the model to create a plan before thinking. While we have shown this procedure to positively
affect reasoning performance, the expansion of the prompt might cause the model to use more to-
kens when formulating an answer. However, we found the opposite to be true. We report the average
number of tokens K2-THINK generated in the final response before and after implementing test-time
computation in Table 3 for each benchmark evaluated across Math, Code and Science domains, com-
paring the K2-THINK post-training checkpoint and the full K2-THINK system. The inclusion of this plan
achieves two benefits: response quality improves and there is a reduction in the number of tokens
used by up to nearly 12% in comparison to the post-training checkpoint. Thus, by integrating planning
before reasoning, K2-THINK provides more concise answers as a result of the test-time computation
we have used.

We also compare the average number of tokens used among the best performing open-weight mod-
els. We see that K2-THINK responses are far shorter than Qwen3-235-A22B and in a similar range to
what is produced by GPT-OSS 120B inmathematical reasoning. However, when comparison response
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Model AIME 2024 AIME 2025 HMMT25 Omni-HARD LCBv5 GPQA-D
SFT+RL Checkpoint 21,482 25,262 29,136 34,042 13,589 14,998
K2-THINK 20,040 (-6.72%) 24,266 (-3.94%) 27,030 (-7.23%) 30,050 (-11.73%) 12,166 (-10.53%) 14,680 (-2.12%)
Qwen3-235B-A22B 29,896 34,541 39,767 45,701 27,716 20,007
GPT-OSS 120B 15,971 19,151 25,566 35,021 7,389 11,281
DeepSeek v3.1 12,364 15,143 19,073 24,841 6,158 6,592

Table 3: An analytical comparison of the average number of tokens used between the full K2-THINK system
and the post-training checkpoint. After implementing our test-time computation scaffold, our response length
decreases on average, with the percentage of reduction included in the shaded cells. We also compare to the
average number of tokens generated by top-performing open-weight models, showing better efficiency than
Qwen3-235B-A22B and similar to GPT-OSS 120B.

lengths for Code and Science domains, there are greater opportunities to find efficiencies in future
improvements of K2-THINK.

3.1 Red-teaming K2-THINK
Ensuring the safe operation of a model is essential for its open release. To this end, we systematically
evaluate K2-THINK against adversarial prompts, harmful content, and robustness stress tests using
establishedpublic safetybenchmarks (Lin et al., 2024). For eachbenchmark, wesample100 test cases
and report asafescore, wherehigher values indicatestronger safetyperformance. Toprovideaclearer
pictureof real-world risks, weconsolidate results into four key aspects that capture thepractical safety
surfaces most relevant in deployment:

1. High-Risk Content Refusal—ability to reject direct requests for unsafe or harmful outputs.

2. ConversationalRobustness—maintainingsafebehaviorconsistently acrossmulti-turndialogues.

3. Cybersecurity & Data Protection— resilience against information leakage, prompt extraction,
and cyberattack assistance.

4. Jailbreak Resistance— robustness to adversarial attacks designed to bypass safeguards.

This framework provides a clearer operational safety profile and guides targeted mitigations.

Dataset Score

Do-Not-Answer 0.88
HarmBench 0.56
PhysicalSafety 0.49
SimpleSafetyTests 0.95
ToxiGen 0.97
CoNA 0.97
HarmfulQ 0.99

Macro-average 0.83

Table 4: High-risk content refusal results across
safety datasets. Themodel achieves near-perfect
performance on four of seven tasks, with clear im-
provementopportunitiesonHarmBenchandPhys-
icalSafety.

High-Risk Content Refusal We first check the
model’s reliability in rejecting unsafe requests. Eval-
uation spans complementary datasets covering
harmful instructions (Do-Not-Answer (Wang et al.,
2023c), HarmBench (Mazeika et al., 2024)), physi-
cal harm scenarios (PhysicalSafety (Bianchi et al.,
2023)), basic safety checks (SimpleSafetyTests
(Vidgen et al., 2023)), toxic content generation (Tox-
iGen (Hartvigsen et al., 2022; Hosseini et al., 2023)),
commonsense safety (CoNA (Bianchi et al., 2023)),
and harmful Q&A (HarmfulQ (Shaikh et al., 2023)).

The results of this analysis are featured in Table 4.
K2-THINK demonstrates extensive ability to avoid
generating high-risk content as measured by near-
perfect scores in 4 out of 7 benchmarks. Of the re-
maining 3 benchmarks in this aspect of safety evaluation, HarmBench and PhysicalSafety reveal a
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weakness in our system toward recognizing cyber or physical risks. We are activelyworking to improve
our system along these dimensions of risk in its public facing deployment.

Conversational Robustness Next, we assess refusal consistency across multi-turn adversarial dia-
loguesusingDialogueSafety (Dinanet al., 2019),HH-RLHF (Bai et al., 2022), andDICES350 (Aroyoet al.,
2023) for dynamic dialogue manipulations.

We see in Table 5 that K2-THINK is especially robust to sustained adversarial dialogues and repeated
efforts to ellicit harmful behaviors from our reasoning system. Here, K2-THINK is near perfect at main-
taining refusal consistency on both the DialogueSafety and HH-RLHF benchmarks.

Dataset Score
DialogueSafety 0.99
HH-RLHF 0.95
DICES350 0.73
Macro-average 0.89

Table 5: Conversational robustness results across di-
alogue safety datasets. The model exhibits notable
robustness to multi-turn adversarial attempts to pro-
duce harmful outputs, with particular strength on Dia-
logueSafety and room for improvementonDICES350.

Dataset Score
PersonalInfoLeak (few-shot) 0.86
CyberattackAssistance 0.47
PromptExtractionRobustness 0.35
Macro-average 0.56

Table 6: Cybersecurity, data protection, and prompt
extraction results. The model demonstrates robust-
ness against leaking personal information, with sig-
nificant room for improvement on cyberattack assis-
tance prevention and prompt extraction robustness.

Cybersecurity & Data Protection & Prompt Extraction We evaluate resilience against data leakage
and misuse with PersonalInfoLeak (Li et al., 2023) (privacy leakage), CyberattackAssistance (Bhatt
et al., 2023) (hackingassistance), andPromptExtractionRobustness (Toyeret al., 2023) (systemprompt
extraction).

Dataset Score

Few-Shot Attack 0.96
Gandalf Ignore 0.87
Tense Change 0.84
Multilingual 0.83
PromptInjection 0.77
One-Sided Statement 0.77
Refusal Suppression 0.76
Persona Modulation 0.59
Do-Anything-Now 0.43
LatentJailbreak 0.37

Macro-average 0.72

Table 7: Jailbreak resistance results across adversarial
prompt techniques. The model demonstrates mixed re-
silience, with strong performance against direct attacks
and vulnerabilities to indirect methods.

Wesee in Table 6 that K2-THINK is able to resist
attempts to extract personally identifying in-
formation while unfortunately exhibiting some
susceptibility to revealing the system prompt
and aiding in devising cyberattacks. This indi-
cates an opportunity to further tune our rea-
soning system for improved resilience.

Jailbreak Resistance Finally, we evaluate
various adversarial attack strategies: hidden
triggers (LatentJailbreak (Qiu et al., 2023)),
prompt redirection (PromptInjection (Liu et al.,
2023b)), instruction overrides (Gandalf Ignore
(Schulhoff et al., 2023)), role-play attacks (DAN
(Shen et al., 2023)), cross-lingual exploits (Mul-
tilingual (Wang et al., 2023a)), grammatical per-
turbations (Tense Change Lin et al. (2024)),
adversarial demonstrations (Few-Shot Attack
(Wei et al., 2023b)), bias-driven attacks (One-Sided Statement (Liu et al., 2023a)), identitymanipulation
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(PersonaModulation (Shah et al., 2023)), and direct refusal bypasses (Refusal Suppression (Wei et al.,
2023a)).

K2-THINK’s jailbreak resistance results (shown in Table 7) demonstrate a mixture of resilience and sus-
ceptibility to various adversarial prompt strategies. K2-THINK exhibits strong performance when at-
tacks are immediately apparent but shows an apparent weakness to indirect attacks. This lack of gen-
eralized robustness to adversarial jailbreaking attempts illustrates a need to thoroughly improve our
publicly deployed reasoning system.

Overall Results Acrossall fourdimensions, results areaggregated intoasingleSafety-4macroscore,
computing the average from the four analyses performedaspart of our safety testingof K2-THINK. The
macro average of each of the four analyses are included in Table 8.

Safety Aspect Macro-Avg Score
High-Risk Content Refusal 0.83
Conversational Robustness 0.89
Cybersecurity & Data Protection 0.56
Jailbreak Resistance 0.72
Safety-4 Macro (avg) 0.75

Table 8: Overall Safety-4 results which is a composite score of the four safety surfaces evaluated in this broad
analysis. The macro score of 0.750 indicates that K2-THINK establishes a solid safety profile with specific
strengths in harmful content refusal and maintaining consistent behavior in conversations.

Overall, K2-THINK achieves a Safety-4 macro score of 0.750, indicating a solid baseline of safety with
strong performance in refusing harmful content andmaintaining consistent behavior in conversations.
At the same time, we recognize that further work is required to strengthen cybersecurity defenses,
jailbreak robustness, and refusal calibration. While establishing a solid baseline, we acknowledge
clear opportunities to improve the safety of our reasoning system. Addressing these areas is an active
priority in our roadmap to further improve K2-THINK under adversarial conditions.

4 RelatedWork
Extending base language model capabilities via SFT Supervised fine-tuning (SFT) has become a
widelyusedpost-trainingmethod toextend thecapabilityboundaryofLargeLanguageModels (Ouyang
et al., 2022;Dubeyet al., 2024;Guoet al., 2025; Bercovichet al., 2025). Early SFTworkprimarily focused
on task specialization, adapting foundational models to specific NLP benchmarks like text classifica-
tion or translation on narrowly-defined datasets (Liu et al., 2019; Raffel et al., 2020). This paradigm
shifted significantly with the rise of large-scale instruction tuning; the goal evolved from single-task
mastery to creating general-purpose assistants capable of following diverse human commands (Wei
et al., 2021; Ouyang et al., 2022; Taori et al., 2023). More recently, SFT has pivoted towards enhancing
complex reasoning on diverse downstream tasks like math, code, and science (Hui et al., 2024; Yang
et al., 2024b; Abdin et al., 2025; Liu et al.). Some approaches focus on scale, constructing massive
datasets of reasoning traces to instill robust, long-chain-of-thought capabilities in models (Guha et al.,
2025; Tian et al., 2025; Liu et al., 2025b). In contrast, other methods demonstrate that meticulously
curated, high-quality data can also endow LLMs with expert-level reasoning in domains like math (Ye
et al., 2025a;Muennighoff et al., 2025). Building on the above, our work conducts analysis and provides
practical insights on SFT.
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ImprovingLLMReasoningwithRL ReinforcementLearning fromVerifiableRewards (RLVR)hasemerged
as a powerful paradigm for enhancing the reasoning capabilities of Large LanguageModels (Guo et al.,
2025; OpenAI, 2024). Following initial successes, a significant body of open work has explored RLVR,
primarily concentrating on specializing models for highly challenging single domains. Efforts such as
Open-Reasoner-Zero (Hu et al., 2025), Skywork-OR1 (He et al., 2025), DeepScaler (Luo et al., 2025b),
and SimpleRL (Zeng et al., 2025) have notably leveraged extensivemathematical data to achieve state-
of-the-art performance on complex math benchmarks. Similarly, DeepCoder (Luo et al., 2025a) fo-
cused on RL for code generation tasks. While powerful within their specific areas, this domain-specific
focus inherently limits the generalizability of the resultingmodels across the broader landscape of rea-
soning tasks. Concurrent works to our K2-THINK development like General-Reasoner (Ma et al., 2025)
and Nemotron-CrossThinker (Akter et al., 2025) have begun to explore broader domains for RL train-
ing. However, none of these works explore the added utility of test-time computation for improving
the general reasoning capabilties of post-trained models.

Test Time Scaling Test-time scaling has been a major component of proprietary models released in
recent years; such as o1 (OpenAI, 2024), Grok Heavy (xAI, 2025), Gemini 2.5 (Google DeepMind, 2025),
andGPT-5 (OpenAI, 2025). However, with fairly little transparency about specific components and their
overall effect. The closest work to ours is PlanGEN (Parmar et al., 2025), a multi-model framework for
planning and reasoning combining a constraint model, a verification model, and a selection model to
guide inference-time algorithms including Best-of-N. By using constraint-guided iterative verification
and a modified UCB-based selection policy, PlanGEN chooses the most suitable algorithm for each
problem instance. Importantly, they use Best-of-N with verifiers on the plans: we use it for the gener-
ated responses.

Also related are general LLM-basedhierarchical reasoning approaches, particularly those that operate
with at least one level of hierarchy doing planning. Wang et al. (2024a) has a planning model provide
high-level strategy while a solver model performs detailed reasoning. HyperTree Planning (Gui et al.,
2025) models planning with a hypertree-structure, allowing LLMs to decompose planning queries into
structured sub-tasks. Wang et al. (2025a) demonstrates a brain-inspired architecture with separate
recurrent modules for high-level planning and low-level reasoning, showing that explicit separation of
timescales improves performanceon algorithmic reasoning tasks. Our novelty is to combine our “Plan-
Before-You-Think” approach, a type of multi-LLM-hierarchical reasoning, with Best-of-N with verifiers
(Cobbe et al., 2021) in order to return the best response.

5 Discussion
5.1 Primary technical insights
Multiple domains are important for post-training One core finding from our prior work curating RL
data (Cheng et al., 2025) is that for generally useful reasoning models, there is a need to expand post-
training to include more domains. The effect of post-training, and the domains utilized, is nuanced.
Domains commonly included in pre-training (Math, Code, and Science) broadly benefit from a variety
of post-training data as the refinement of themodel’s chains of thought is supportedby the knowledge
it already has. However those domains with limited pre-training exposure–like Logic and Simulation
tasks–only improvewhen they are included in the RL training pipeline. This indicates that using diverse,
multi-domain datasets is critical for developing truly versatile reasoning models.

Test-time computation performance gains can be additivewith the right combination Wefind that
two simple test-time computation proceduresworkwell together: our “Plan-Before-You-Think” prompt
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restructuring in conjunction with Best-of-N scaling. Each individual method does improve over the K2-
THINK model but the largest gains in performance are seen when these components are combined.
To our surprise, simply extracting a high level plan focused on the core concepts associated with the
input and only sampling 3 candidate responses were sufficient to provide sufficient scaling to better
leverage the knowledge embedded in the post-trained model.

“Plan-Before-You-Think” improves model performance while reducing token expenditure By re-
quiring the model to create a plan before initiating its reasoning process, we achieve two benefits:
planning itself improves response quality, and response lengths are reduced nearly by 12%.

5.2 Looking forward
With the release of K2-THINK, we establish an exciting new precedent for the Institute of Foundation
Models, the focus of which is to pursue trustworthy science and provide fully open artifacts for further
research and development. In this report we present:

Empowering small models to “punch above their weight” With the complete K2-THINK system, we
demonstrate that a 32B-scalemodel, post-trained toproduce long reasoningchainsof thought, paired
with relatively little test-time computation can endow the small model with capabilities that are com-
petitive withmodels with orders ofmagnitudemore parameters. Altogether our end-to-end reasoning
system unlocks performance at the frontier of current open-source capabilities.

Beyond Open Source We are extending the limit of our open-source activities beyond data, models
and training artifacts. This expansion of our open-source efforts will now include deploying our full
reasoning system for public use. We are publishing our test-time computation implementation as well.
K2-THINK is broadly available viaAPI and anonlinewebportal. In thisweareopening avenues to explore
how to best “battle-test” public facing LLM infrastructure. Details about how to use and interact with
K2-THINK can be found at k2think.ai, we proudly invite all to try it out!

K2-THINK is a compelling stepping stone for our ongoing efforts to broaden access to foundation
model research and development through open-science. Ourmotivation to deploy K2-THINK for public
use is grounded in curiosity about how to best engineer inference systems for large-scale foundation
models. It is critical to publicly share best practices around hosting these models, how to overcome
common stability issues, and enable continued research into how to robustly stress test deployed
models. Secondarily, as we continue scaling our own open-source models, there will be a time when
simply making the weights and training artifacts public is no longer useful as fewer institutions and or-
ganizations will be able to host or interact with the models themselves. This by-product of our work,
investigating and building ever more capable open models, is antithetical to our founding ethos as a
research institute. We are committed to making publicly available as much of our model development
and deployment as possible in order to enable all who are interested to build on or contribute to our
work. The lessonswe learn through deploymentwith K2-THINK and subsequentmoderately sizedmod-
els will be critical to our ongoing development of exceedingly large and capable models.

Acknowledgment
The authors hereby acknowledge and thank the strong support and collaboration of G42 for their con-
tributions throughout the project, including the essential computational infrastructure aswell as signif-
icant expertise in evaluationmethodology and safety protocols. This partnership proved instrumental
in advancing our research objectives.

16

https://k2think.ai


References
Marah Abdin, Sahaj Agarwal, Ahmed Awadallah, Vidhisha Balachandran, Harkirat Behl, Lingjiao Chen, Gustavo

de Rosa, Suriya Gunasekar, Mojan Javaheripi, Neel Joshi, et al. Phi-4-reasoning technical report. arXiv preprint
arXiv:2504.21318, 2025.

Sandhini Agarwal, Lama Ahmad, Jason Ai, Sam Altman, Andy Applebaum, Edwin Arbus, Rahul K Arora, Yu Bai,
Bowen Baker, Haiming Bao, et al. gpt-oss-120b & gpt-oss-20b model card. arXiv preprint arXiv:2508.10925,
2025a.

Shivam Agarwal, Zimin Zhang, Lifan Yuan, Jiawei Han, and Hao Peng. The unreasonable effectiveness of entropy
minimization in llm reasoning, 2025b. URL https://arxiv.org/abs/2505.15134.

Syeda Nahida Akter, Shrimai Prabhumoye, Matvei Novikov, Seungju Han, Ying Lin, Evelina Bakhturi, Eric Nyberg,
Yejin Choi, Mostofa Patwary, Mohammad Shoeybi, et al. Nemotron-crossthink: Scaling self-learning beyond math
reasoning. arXiv preprint arXiv:2504.13941, 2025.

Chenxin An, Zhihui Xie, Xiaonan Li, Lei Li, Jun Zhang, Shansan Gong, Ming Zhong, Jingjing Xu, Xipeng Qiu,
Mingxuan Wang, and Lingpeng Kong. Polaris: A post-training recipe for scaling reinforcement learning on
advanced reasoning models, 2025. URL https://hkunlp.github.io/blog/2025/Polaris.

Lora Aroyo, Alex S. Taylor, Mark Díaz, Christopher Homan, Alicia Parrish, Gregory Serapio-García, Vinodkumar
Prabhakaran, and Ding Wang. DICES dataset: Diversity in conversational AI evaluation for safety. In Advances
in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems
2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023, 2023. URL http://papers.nips.cc
/paper\_files/paper/2023/hash/a74b697bce4cac6c91896372abaa8863-Abstract-Datasets\
_and\_Benchmarks.html.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain, Stanislav
Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with reinforcement learning
from human feedback, 2022. URL https://doi.org/10.48550/arXiv.2204.05862.

Mislav Balunović, Jasper Dekoninck, Ivo Petrov, Nikola Jovanović, and Martin Vechev. Matharena: Evaluating
llms on uncontaminated math competitions. arXiv preprint arXiv:2505.23281, 2025.

Akhiad Bercovich, Itay Levy, Izik Golan, Mohammad Dabbah, Ran El-Yaniv, Omri Puny, Ido Galil, Zach Moshe,
Tomer Ronen, Najeeb Nabwani, Ido Shahaf, Oren Tropp, Ehud Karpas, Ran Zilberstein, Jiaqi Zeng, Soumye
Singhal, Alexander Bukharin, Yian Zhang, Tugrul Konuk, Gerald Shen, Ameya Sunil Mahabaleshwarkar, Bilal
Kartal, Yoshi Suhara, Olivier Delalleau, Zijia Chen, Zhilin Wang, David Mosallanezhad, Adi Renduchintala,
Haifeng Qian, Dima Rekesh, Fei Jia, Somshubra Majumdar, Vahid Noroozi, Wasi Uddin Ahmad, Sean Nar-
enthiran, Aleksander Ficek, Mehrzad Samadi, Jocelyn Huang, Siddhartha Jain, Igor Gitman, Ivan Moshkov,
Wei Du, Shubham Toshniwal, George Armstrong, Branislav Kisacanin, Matvei Novikov, Daria Gitman, Evelina
Bakhturina, Jane Polak Scowcroft, John Kamalu, Dan Su, Kezhi Kong, Markus Kliegl, Rabeeh Karimi, Ying
Lin, Sanjeev Satheesh, Jupinder Parmar, Pritam Gundecha, Brandon Norick, Joseph Jennings, Shrimai Prab-
humoye, Syeda Nahida Akter, Mostofa Patwary, Abhinav Khattar, Deepak Narayanan, Roger Waleffe, Jimmy
Zhang, Bor-Yiing Su, Guyue Huang, Terry Kong, Parth Chadha, Sahil Jain, Christine Harvey, Elad Segal,
Jining Huang, Sergey Kashirsky, Robert McQueen, Izzy Putterman, George Lam, Arun Venkatesan, Sherry
Wu, Vinh Nguyen, Manoj Kilaru, Andrew Wang, Anna Warno, Abhilash Somasamudramath, Sandip Bhaskar,
Maka Dong, Nave Assaf, Shahar Mor, Omer Ullman Argov, Scot Junkin, Oleksandr Romanenko, Pedro Larroy,
Monika Katariya, Marco Rovinelli, Viji Balas, Nicholas Edelman, Anahita Bhiwandiwalla, Muthu Subramaniam,
Smita Ithape, Karthik Ramamoorthy, Yuting Wu, Suguna Varshini Velury, Omri Almog, Joyjit Daw, Denys
Fridman, Erick Galinkin, Michael Evans, Shaona Ghosh, Katherine Luna, Leon Derczynski, Nikki Pope, Eileen
Long, Seth Schneider, Guillermo Siman, Tomasz Grzegorzek, Pablo Ribalta, Monika Katariya, Chris Alexiuk,
Joey Conway, Trisha Saar, Ann Guan, Krzysztof Pawelec, Shyamala Prayaga, Oleksii Kuchaiev, Boris Ginsburg,
Oluwatobi Olabiyi, Kari Briski, Jonathan Cohen, Bryan Catanzaro, Jonah Alben, Yonatan Geifman, and Eric
Chung. Llama-nemotron: Efficient reasoning models, 2025. URL https://arxiv.org/abs/2505.00949.

Manish Bhatt, Sahana Chennabasappa, Cyrus Nikolaidis, Shengye Wan, Ivan Evtimov, Dominik Gabi, Daniel Song,

17

https://arxiv.org/abs/2505.15134
https://hkunlp.github.io/blog/2025/Polaris
http://papers.nips.cc/paper\_files/paper/2023/hash/a74b697bce4cac6c91896372abaa8863-Abstract-Datasets\_and\_Benchmarks.html
http://papers.nips.cc/paper\_files/paper/2023/hash/a74b697bce4cac6c91896372abaa8863-Abstract-Datasets\_and\_Benchmarks.html
http://papers.nips.cc/paper\_files/paper/2023/hash/a74b697bce4cac6c91896372abaa8863-Abstract-Datasets\_and\_Benchmarks.html
https://doi.org/10.48550/arXiv.2204.05862
https://arxiv.org/abs/2505.00949


Faizan Ahmad, Cornelius Aschermann, Lorenzo Fontana, Sasha Frolov, Ravi Prakash Giri, Dhaval Kapil, Yiannis
Kozyrakis, David LeBlanc, James Milazzo, Aleksandar Straumann, Gabriel Synnaeve, Varun Vontimitta, Spencer
Whitman, and Joshua Saxe. Purple llama cyberseceval: A secure coding benchmark for language models, 2023.
URL https://arxiv.org/abs/2312.04724.

Federico Bianchi, Mirac Suzgun, Giuseppe Attanasio, Paul Röttger, Dan Jurafsky, Tatsunori Hashimoto, and James
Zou. Safety-tuned llamas: Lessons from improving the safety of large language models that follow instructions.
CoRR, abs/2309.07875, 2023. URL https://doi.org/10.48550/arXiv.2309.07875.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. Advances in
neural information processing systems, 33:1877–1901, 2020.

Stephen Casper, Xander Davies, Claudia Shi, Thomas Krendl Gilbert, Jérémy Scheurer, Javier Rando, Rachel
Freedman, Tomasz Korbak, David Lindner, Pedro Freire, et al. Open problems and fundamental limitations of
reinforcement learning from human feedback. arXiv preprint arXiv:2307.15217, 2023.

Zhoujun Cheng, Shibo Hao, Tianyang Liu, Fan Zhou, Yutao Xie, Feng Yao, Yuexin Bian, Yonghao Zhuang, Nilabjo
Dey, Yuheng Zha, et al. Revisiting reinforcement learning for llm reasoning from a cross-domain perspective.
arXiv preprint arXiv:2506.14965, 2025.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert,
Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve math word problems. arXiv
preprint arXiv:2110.14168, 2021.

DeepSeek. Deepseek-v3.1 release, August 2025. URL https://api-docs.deepseek.com/news/news2508
21.

Emily Dinan, Samuel Humeau, Bharath Chintagunta, and Jason Weston. Build it break it fix it for dialogue
safety: Robustness from adversarial human attack. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan,
editors, Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 4537–4546, Hong
Kong, China, November 2019. Association for Computational Linguistics. URL https://aclanthology.o
rg/D19-1461/.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil
Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. arXiv e-prints, pages
arXiv–2407, 2024.

Jonathan St BT Evans. Intuition and reasoning: A dual-process perspective. Psychological Inquiry, 21(4):313–326,
2010.

Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo Miao, Qingxiu Dong, Lei Li, Chenghao Ma, Liang Chen,
Runxin Xu, et al. Omni-math: A universal olympiad level mathematic benchmark for large language models.
arXiv preprint arXiv:2410.07985, 2024.

Google DeepMind. Gemini 2.5: Our newest Gemini model with thinking - The Keyword. https://blog.googl
e/technology/google-deepmind/gemini-model-thinking-updates-march-2025/#gemini-2
-5-thinking, March 2025.

Etash Guha, Ryan Marten, Sedrick Keh, Negin Raoof, Georgios Smyrnis, Hritik Bansal, Marianna Nezhurina, Jean
Mercat, Trung Vu, Zayne Sprague, Ashima Suvarna, Benjamin Feuer, Liangyu Chen, Zaid Khan, Eric Frankel,
Sachin Grover, Caroline Choi, Niklas Muennighoff, Shiye Su, Wanjia Zhao, John Yang, Shreyas Pimpalgaonkar,
Kartik Sharma, Charlie Cheng-Jie Ji, Yichuan Deng, Sarah Pratt, Vivek Ramanujan, Jon Saad-Falcon, Jeffrey
Li, Achal Dave, Alon Albalak, Kushal Arora, Blake Wulfe, Chinmay Hegde, Greg Durrett, Sewoong Oh, Mohit
Bansal, Saadia Gabriel, Aditya Grover, Kai-Wei Chang, Vaishaal Shankar, Aaron Gokaslan, Mike A. Merrill,
Tatsunori Hashimoto, Yejin Choi, Jenia Jitsev, Reinhard Heckel, Maheswaran Sathiamoorthy, Alexandros G. Di-
makis, and Ludwig Schmidt. Openthoughts: Data recipes for reasoning models. arXiv preprint arXiv:2506.04178,
2025. URL https://arxiv.org/abs/2506.04178.

18

https://arxiv.org/abs/2312.04724
https://doi.org/10.48550/arXiv.2309.07875
https://api-docs.deepseek.com/news/news250821
https://api-docs.deepseek.com/news/news250821
https://aclanthology.org/D19-1461/
https://aclanthology.org/D19-1461/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/#gemini-2-5-thinking
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/#gemini-2-5-thinking
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/#gemini-2-5-thinking
https://arxiv.org/abs/2506.04178


Runquan Gui, Zhihai Wang, Jie Wang, Chi Ma, Huiling Zhen, Mingxuan Yuan, Jianye HAO, Defu Lian, Enhong
Chen, and Feng Wu. Hypertree planning: Enhancing llm reasoning via hierarchical thinking. In Forty-second
International Conference on Machine Learning, 2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi
Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. arXiv
preprint arXiv:2501.12948, 2025.

Thomas Hartvigsen, Saadia Gabriel, Hamid Palangi, Maarten Sap, Dipankar Ray, and Ece Kamar. Toxigen: A large-
scale machine-generated dataset for adversarial and implicit hate speech detection. In Proceedings of the 60th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 3309–3326,
2022.

Jujie He, Jiacai Liu, Chris Yuhao Liu, Rui Yan, Chaojie Wang, Peng Cheng, Xiaoyu Zhang, Fuxiang Zhang, Jiacheng
Xu, Wei Shen, Siyuan Li, Liang Zeng, Tianwen Wei, Cheng Cheng, Bo An, Yang Liu, and Yahui Zhou. Skywork
open reasoner series. https://capricious-hydrogen-41c.notion.site/Skywork-Open-Reaonse
r-Series-1d0bc9ae823a80459b46c149e4f51680, 2025. Notion Blog.

Saghar Hosseini, Hamid Palangi, and Ahmed Hassan Awadallah. An empirical study of metrics to measure repre-
sentational harms in pre-trained language models. CoRR, abs/2301.09211, 2023. URL https://doi.org/10
.48550/arXiv.2301.09211.

Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung-Yeung Shum. Open-reasoner-zero:
An open source approach to scaling up reinforcement learning on the base model. arXiv preprint arXiv:2503.24290,
2025.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang, Bowen Yu,
Keming Lu, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186, 2024.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando Solar-Lezama,
Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free evaluation of large language models
for code. arXiv preprint arXiv:2403.07974, 2024.

Yixin Ji, Juntao Li, Hai Ye, Kaixin Wu, Kai Yao, Jia Xu, Linjian Mo, and Min Zhang. Test-time compute: from
system-1 thinking to system-2 thinking. arXiv preprint arXiv:2501.02497, 2025a.

Yunjie Ji, Xiaoyu Tian, Sitong Zhao, Haotian Wang, Shuaiting Chen, Yiping Peng, Han Zhao, and Xiangang Li.
Am-thinking-v1: Advancing the frontier of reasoning at 32b scale. arXiv preprint arXiv:2505.08311, 2025b.

Aobo Kong, Shiwan Zhao, Hao Chen, Qicheng Li, Yong Qin, Ruiqi Sun, Xin Zhou, Enzhi Wang, and Xiaohang
Dong. Better zero-shot reasoning with role-play prompting. arXiv preprint arXiv:2308.07702, 2023.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative decoding. In
International Conference on Machine Learning, pages 19274–19286. PMLR, 2023.

Haoran Li, Dadi Guo, Wei Fan, Mingshi Xu, Jie Huang, Fanpu Meng, and Yangqiu Song. Multi-step jailbreak-
ing privacy attacks on chatgpt. In Findings of the Association for Computational Linguistics: EMNLP 2023,
Singapore, December 6-10, 2023, pages 4138–4153, 2023. URL https://aclanthology.org/2023.find
ings-emnlp.272.

Lizhi Lin, Honglin Mu, Zenan Zhai, Minghan Wang, Yuxia Wang, Renxi Wang, Junjie Gao, Yixuan Zhang, Wanx-
iang Che, Timothy Baldwin, Xudong Han, and Haonan Li. Against the achilles’ heel: A survey on red teaming
for generative models, 2024. URL https://arxiv.org/abs/2404.00629.

Chengyuan Liu, Fubang Zhao, Lizhi Qing, Yangyang Kang, Changlong Sun, Kun Kuang, and Fei Wu. Goal-oriented
prompt attack and safety evaluation for llms, 2023a. URL https://arxiv.org/abs/2309.11830.

Mingjie Liu, Shizhe Diao, Ximing Lu, Jian Hu, Xin Dong, Yejin Choi, Jan Kautz, and Yi Dong. Prorl: Prolonged
reinforcement learning expands reasoning boundaries in large language models, 2025a. URL https://arxiv.
org/abs/2505.24864.

19

https://capricious-hydrogen-41c.notion.site/Skywork-Open-Reaonser-Series-1d0bc9ae823a80459b46c149e4f51680
https://capricious-hydrogen-41c.notion.site/Skywork-Open-Reaonser-Series-1d0bc9ae823a80459b46c149e4f51680
https://doi.org/10.48550/arXiv.2301.09211
https://doi.org/10.48550/arXiv.2301.09211
https://aclanthology.org/2023.findings-emnlp.272
https://aclanthology.org/2023.findings-emnlp.272
https://arxiv.org/abs/2404.00629
https://arxiv.org/abs/2309.11830
https://arxiv.org/abs/2505.24864
https://arxiv.org/abs/2505.24864


Yi Liu, Gelei Deng, Yuekang Li, Kailong Wang, Tianwei Zhang, Yepang Liu, Haoyu Wang, Yan Zheng, and Yang
Liu. Prompt injection attack against llm-integrated applications, 2023b. URL https://doi.org/10.48550
/arXiv.2306.05499.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 2019.

Zihan Liu, Zhuolin Yang, Yang Chen, Chankyu Lee, Mohammad Shoeybi, Bryan Catanzaro, and Wei Ping.
Acereason-nemotron 1.1: Advancing math and code reasoning through sft and rl synergy. arXiv preprint
arXiv:2506.13284, 2025b.

Zihang Liu, Tianyu Pang, Oleg Balabanov, Chaoqun Yang, Tianjin Huang, Lu Yin, Yaoqing Yang, and Shiwei
Liu. Lift the veil for the truth: Principal weights emerge after rank reduction for reasoning-focused supervised
fine-tuning. In Forty-second International Conference on Machine Learning.

Michael Luo, Sijun Tan, Roy Huang, Ameen Patel, Alpay Ariyak, Qingyang Wu, Xiaoxiang Shi, Rachel Xin, Colin
Cai, Maurice Weber, Ce Zhang, Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deepcoder: A fully open-source
14b coder at o3-mini level, 2025a. URL https://pretty-radio-b75.notion.site/DeepCoder-A-Ful
ly-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51. Notion
Blog.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin Cai, Jeffrey Luo,
Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing o1-preview with a 1.5b model by scaling
rl, 2025b. URL https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview
-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2. Notion Blog.

Xueguang Ma, Qian Liu, Dongfu Jiang, Ge Zhang, Zejun Ma, and Wenhu Chen. General-reasoner: Advancing llm
reasoning across all domains. https://github.com/TIGER-AI-Lab/General-Reasoner/blob/main/
General_Reasoner.pdf, 2025.

MAA. American invitational mathematics examination - aime. In American Invitational Mathematics Examination
- AIME 2024, February 2024. URL https://maa.org/math-competitions/american-invitationa
l-mathematics-examination-aime.

Mantas Mazeika, Long Phan, Xuwang Yin, Andy Zou, Zifan Wang, Norman Mu, Elham Sakhaee, Nathaniel Li,
Steven Basart, Bo Li, David A. Forsyth, and Dan Hendrycks. Harmbench: A standardized evaluation framework
for automated red teaming and robust refusal. CoRR, abs/2402.04249, 2024. URL https://doi.org/10.4
8550/arXiv.2402.04249.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke Zettlemoyer,
Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time scaling. arXiv preprint
arXiv:2501.19393, 2025.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher Hesse, Shantanu
Jain, Vineet Kosaraju, William Saunders, Xu Jiang, Karl Cobbe, Tyna Eloundou, Gretchen Krueger, Kevin
Button, Matthew Knight, Benjamin Chess, and John Schulman. Webgpt: Browser-assisted question-answering
with human feedback. arXiv preprint arXiv:2112.09332, 2021.

NVIDIA. Openreasoning-nemotron-32b, july 2025. URL https://huggingface.co/nvidia/OpenReas
oning-Nemotron-32B. Large language model for mathematical, coding, and scientific reasoning. Based on
Qwen2.5-32B-Instruct with 32B parameters. Released July 16, 2025.

OpenAI. OpenAI o1 System Card. https://openai.com/index/openai-o1-system-card/, 2024.

OpenAI. Introducing GPT-5. https://openai.com/index/introducing-gpt-5/, 2025. Accessed:
2025-09-04.

OpenAI. Introducing openai o3 and o4-mini, 2025. URL https://openai.com/index/introducing-o3-a
nd-o4-mini/. Accessed: 2025-06-12.

20

https://doi.org/10.48550/arXiv.2306.05499
https://doi.org/10.48550/arXiv.2306.05499
https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51
https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://github.com/TIGER-AI-Lab/General-Reasoner/blob/main/General_Reasoner.pdf
https://github.com/TIGER-AI-Lab/General-Reasoner/blob/main/General_Reasoner.pdf
https://maa.org/math-competitions/american-invitational-mathematics-examination-aime
https://maa.org/math-competitions/american-invitational-mathematics-examination-aime
https://doi.org/10.48550/arXiv.2402.04249
https://doi.org/10.48550/arXiv.2402.04249
https://huggingface.co/nvidia/OpenReasoning-Nemotron-32B
https://huggingface.co/nvidia/OpenReasoning-Nemotron-32B
https://openai.com/index/openai-o1-system-card/
https://openai.com/index/introducing-gpt-5/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/


Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini
Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with human feedback.
Advances in neural information processing systems, 35:27730–27744, 2022.

Mihir Parmar, Xin Liu, Palash Goyal, Yanfei Chen, Long Le, Swaroop Mishra, Hossein Mobahi, Jindong Gu,
Zifeng Wang, Hootan Nakhost, et al. Plangen: A multi-agent framework for generating planning and reasoning
trajectories for complex problem solving. arXiv preprint arXiv:2502.16111, 2025.

Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Chen Bo Calvin Zhang, Mohamed
Shaaban, John Ling, Sean Shi, et al. Humanity’s last exam. arXiv preprint arXiv:2501.14249, 2025.

Huachuan Qiu, Shuai Zhang, Anqi Li, Hongliang He, and Zhenzhong Lan. Latent jailbreak: A benchmark for
evaluating text safety and output robustness of large language models. CoRR, abs/2307.08487, 2023. URL
https://doi.org/10.48550/arXiv.2307.08487.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li,
and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of
machine learning research, 21(140):1–67, 2020.

Abhinav Rastogi, Albert Q Jiang, Andy Lo, Gabrielle Berrada, Guillaume Lample, Jason Rute, Joep Barmentlo,
Karmesh Yadav, Kartik Khandelwal, Khyathi Raghavi Chandu, et al. Magistral. arXiv preprint arXiv:2506.10910,
2025.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani, Julian
Michael, and Samuel R. Bowman. Gpqa: A graduate-level google-proof q&a benchmark, 2023. URL https:
//arxiv.org/abs/2311.12022.

Sander V Schulhoff, Jeremy Pinto, Anaum Khan, Louis-FranÃois Bouchard, Chenglei Si, Jordan Lee Boyd-Graber,
Svetlina Anati, Valen Tagliabue, Anson Liu Kost, and Christopher R Carnahan. Ignore this title and hackaprompt:
Exposing systemic vulnerabilities of llms through a global prompt hacking competition. In Empirical Methods
in Natural Language Processing, 2023.

Dale Schuurmans, Hanjun Dai, and Francesco Zanini. Autoregressive large language models are computationally
universal. arXiv preprint arXiv:2410.03170, 2024.

Rusheb Shah, Quentin Feuillade-Montixi, Soroush Pour, Arush Tagade, Stephen Casper, and Javier Rando. Scalable
and transferable black-box jailbreaks for language models via persona modulation. CoRR, abs/2311.03348, 2023.
URL https://doi.org/10.48550/arXiv.2311.03348.

Omar Shaikh, Hongxin Zhang, William Held, Michael S. Bernstein, and Diyi Yang. On second thought, let’s not
think step by step! bias and toxicity in zero-shot reasoning. In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), ACL 2023, Toronto, Canada, July 9-14,
2023, pages 4454–4470, 2023. URL https://doi.org/10.18653/v1/2023.acl-long.244.

Rulin Shao, Shuyue Stella Li, Rui Xin, Scott Geng, Yiping Wang, Sewoong Oh, Simon Shaolei Du, Nathan Lam-
bert, Sewon Min, Ranjay Krishna, Yulia Tsvetkov, Hannaneh Hajishirzi, Pang Wei Koh, and Luke Zettlemoyer.
Spurious rewards: Rethinking training signals in rlvr. https://rethink-rlvr.notion.site/Spurious
-Rewards-Rethinking-Training-Signals-in-RLVR-1f4df34dac1880948858f95aeb88872f, 2025.
Notion Blog.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang,
YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open language models.
arXiv preprint arXiv:2402.03300, 2024.

Asankhaya Sharma. Optillm: Optimizing inference proxy for llms, 2024. URL https://github.com/codelio
n/optillm.

Xinyue Shen, Zeyuan Chen, Michael Backes, Yun Shen, and Yang Zhang. ”do anything now”: Characterizing
and evaluating in-the-wild jailbreak prompts on large language models. CoRR, abs/2308.03825, 2023. URL
https://doi.org/10.48550/arXiv.2308.03825.

21

https://doi.org/10.48550/arXiv.2307.08487
https://arxiv.org/abs/2311.12022
https://arxiv.org/abs/2311.12022
https://doi.org/10.48550/arXiv.2311.03348
https://doi.org/10.18653/v1/2023.acl-long.244
https://rethink-rlvr.notion.site/Spurious-Rewards-Rethinking-Training-Signals-in-RLVR-1f4df34dac1880948858f95aeb88872f
https://rethink-rlvr.notion.site/Spurious-Rewards-Rethinking-Training-Signals-in-RLVR-1f4df34dac1880948858f95aeb88872f
https://github.com/codelion/optillm
https://github.com/codelion/optillm
https://doi.org/10.48550/arXiv.2308.03825


Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng, Haibin Lin, and
Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In Proceedings of the Twentieth European
Conference on Computer Systems, pages 1279–1297, 2025.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion: Language
agents with verbal reinforcement learning. Advances in Neural Information Processing Systems, 36:8634–8652,
2023.

Charlie Victor Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM test-time compute optimally can be
more effective than scaling parameters for reasoning. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=4FWAwZtd2n.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford, Dario Amodei,
and Paul F Christiano. Learning to summarize with human feedback. Advances in neural information processing
systems, 33:3008–3021, 2020.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, and
Tatsunori B Hashimoto. Stanford alpaca: An instruction-following llama model, 2023.

Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, 2025.

Minyang Tian, Luyu Gao, Shizhuo Dylan Zhang, Xinan Chen, Cunwei Fan, Xuefei Guo, Roland Haas, Pan Ji,
Kittithat Krongchon, Yao Li, Shengyan Liu, Di Luo, Yutao Ma, Hao Tong, Kha Trinh, Chenyu Tian, Zihan
Wang, Bohao Wu, Yanyu Xiong, Shengzhu Yin, Minhui Zhu, Kilian Lieret, Yanxin Lu, Genglin Liu, Yufeng Du,
Tianhua Tao, Ofir Press, Jamie Callan, Eliu Huerta, and Hao Peng. Scicode: A research coding benchmark
curated by scientists, 2024.

Xiaoyu Tian, Yunjie Ji, Haotian Wang, Shuaiting Chen, Sitong Zhao, Yiping Peng, Han Zhao, and Xiangang Li.
Not all correct answers are equal: Why your distillation source matters. arXiv preprint arXiv:2505.14464, 2025.
URL https://arxiv.org/abs/2505.14464.

Sam Toyer, Olivia Watkins, Ethan Adrian Mendes, Justin Svegliato, Luke Bailey, Tiffany Wang, Isaac Ong, Karim
Elmaaroufi, Pieter Abbeel, Trevor Darrell, Alan Ritter, and Stuart Russell. Tensor trust: Interpretable prompt
injection attacks from an online game. CoRR, abs/2311.01011, 2023. URL https://doi.org/10.48550/a
rXiv.2311.01011.

Bertie Vidgen, Hannah Rose Kirk, Rebecca Qian, Nino Scherrer, Anand Kannappan, Scott A. Hale, and Paul
Röttger. Simplesafetytests: a test suite for identifying critical safety risks in large language models. CoRR,
abs/2311.08370, 2023. URL https://doi.org/10.48550/arXiv.2311.08370.

Danqing Wang, Zhuorui Ye, Fei Fang, and Lei Li. Cooperative strategic planning enhances reasoning capabilities
in large language models. arXiv preprint arXiv:2410.20007, 2024a.

Guan Wang, Jin Li, Yuhao Sun, Xing Chen, Changling Liu, Yue Wu, Meng Lu, Sen Song, and Yasin Abbasi Yadkori.
Hierarchical reasoning model. arXiv preprint arXiv:2506.21734, 2025a.

Junlin Wang, Jue Wang, Ben Athiwaratkun, Ce Zhang, and James Zou. Mixture-of-agents enhances large language
model capabilities. arXiv preprint arXiv:2406.04692, 2024b.

Wenxuan Wang, Zhaopeng Tu, Chang Chen, Youliang Yuan, Jen-tse Huang, Wenxiang Jiao, and Michael R. Lyu.
All languages matter: On the multilingual safety of large language models. CoRR, abs/2310.00905, 2023a. URL
https://doi.org/10.48550/arXiv.2310.00905.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. Self-consistency improves chain of thought reasoning in language models. In The Eleventh
International Conference on Learning Representations, 2023b. URL https://openreview.net/forum?id=
1PL1NIMMrw.

Yiping Wang, Qing Yang, Zhiyuan Zeng, Liliang Ren, Liyuan Liu, Baolin Peng, Hao Cheng, Xuehai He, Kuan Wang,
Jianfeng Gao, Weizhu Chen, Shuohang Wang, Simon Shaolei Du, and Yelong Shen. Reinforcement learning for

22

https://openreview.net/forum?id=4FWAwZtd2n
https://arxiv.org/abs/2505.14464
https://doi.org/10.48550/arXiv.2311.01011
https://doi.org/10.48550/arXiv.2311.01011
https://doi.org/10.48550/arXiv.2311.08370
https://doi.org/10.48550/arXiv.2310.00905
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw


reasoning in large language models with one training example, 2025b. URL https://arxiv.org/abs/2504
.20571.

Yuxia Wang, Haonan Li, Xudong Han, Preslav Nakov, and Timothy Baldwin. Do-not-answer: A dataset for
evaluating safeguards in llms. CoRR, abs/2308.13387, 2023c. URL https://doi.org/10.48550/arXiv.2
308.13387.

Zengzhi Wang, Fan Zhou, Xuefeng Li, and Pengfei Liu. Octothinker: Revisiting mid-training in the era of rl scaling.
https://tinyurl.com/OctoThinker, 2025c. Notion Blog.

Alexander Wei, Nika Haghtalab, and Jacob Steinhardt. Jailbroken: How does LLM safety training fail? In Advances
in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023,
NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023, 2023a. URL http://papers.nips.cc/paper
\_files/paper/2023/hash/fd6613131889a4b656206c50a8bd7790-Abstract-Conference.html.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M Dai,
and Quoc V Le. Finetuned language models are zero-shot learners. arXiv preprint arXiv:2109.01652, 2021.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.
Chain-of-thought prompting elicits reasoning in large language models. Advances in neural information processing
systems, 35:24824–24837, 2022.

Zeming Wei, Yifei Wang, and Yisen Wang. Jailbreak and guard aligned language models with only few in-context
demonstrations. CoRR, abs/2310.06387, 2023b. URL https://doi.org/10.48550/arXiv.2310.06387.

xAI. Grok 4. https://x.ai/news/grok-4, July 2025.

Guowei Xu, Peng Jin, Li Hao, Yibing Song, Lichao Sun, and Li Yuan. Llava-o1: Let vision language models reason
step-by-step. arXiv preprint arXiv:2411.10440, 2024.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei
Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint arXiv:2412.15115, 2024a.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jianhong Tu, Jin-
gren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical expert model via self-
improvement. arXiv preprint arXiv:2409.12122, 2024b.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao, Chengen
Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388, 2025a.

Wenkai Yang, Shuming Ma, Yankai Lin, and Furu Wei. Towards thinking-optimal scaling of test-time compute for
llm reasoning. arXiv preprint arXiv:2502.18080, 2025b.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more for reasoning.
arXiv preprint arXiv:2502.03387, 2025a.

Yixin Ye, Yang Xiao, Tiantian Mi, and Pengfei Liu. Aime-preview: A rigorous and immediate evaluation framework
for advanced mathematical reasoning, 2025b.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong Liu, Lingjun Liu,
Xin Liu, et al. Dapo: An open-source llm reinforcement learning system at scale. arXiv preprint arXiv:2503.14476,
2025.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does reinforcement
learning really incentivize reasoning capacity in llms beyond the base model? arXiv preprint arXiv:2504.13837,
2025.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-zoo: Investigating
and taming zero reinforcement learning for open base models in the wild. arXiv preprint arXiv:2503.18892, 2025.

Xuandong Zhao, Zhewei Kang, Aosong Feng, Sergey Levine, and Dawn Song. Learning to reason without external
rewards. arXiv preprint arXiv:2505.19590, 2025.

23

https://arxiv.org/abs/2504.20571
https://arxiv.org/abs/2504.20571
https://doi.org/10.48550/arXiv.2308.13387
https://doi.org/10.48550/arXiv.2308.13387
https://tinyurl.com/OctoThinker
http://papers.nips.cc/paper\_files/paper/2023/hash/fd6613131889a4b656206c50a8bd7790-Abstract-Conference.html
http://papers.nips.cc/paper\_files/paper/2023/hash/fd6613131889a4b656206c50a8bd7790-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2310.06387
https://x.ai/news/grok-4

	Introduction
	K2-Think Development
	Phase 1: Supervised Fine Tuning
	Observations

	Phase 2: Reinforcement Learning with Verifiable Rewards
	Observations

	Phase 3: Test-time Improvement
	Observations

	Deploying K2-Think

	K2-Think Evaluation
	Red-teaming K2-Think

	Related Work
	Discussion
	Primary technical insights
	Looking forward


